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A characterization of normed linear spaces, which "transmit" proximinality for
subspaces of finite codimension, is given. This also gives a solution to a problem of
Pollul [10]. (19~7 AcademIC Press. Inc

1. NOTATIONS

Throughout the paper E stands for a real normed linear space, E* for its
dual, and M will always denote a closed linear subspace of E.

lf M is a subspace of E, we write M 1 for its annihilator

{IE E*:f(m) = 0, for all mE M}

in E*. The space M~ is isometrically isomorphic to (E/M)* through the
canonical linear isometry, and so if the codimension of M is finite, say 11,

then the dimension of M -l is also 11.

For any normed linear space E, we will denote by E 1 the unit ball of E.
For instance, the unit ball of the space (M-l)* will be denoted by (M")r

For x E E, we denote by .x the image of x in the canonical embedding of
E into E** and by I.I M (x) the restriction of .x to the subspace M~ of E*.

If C is a bounded, closed, convex subset of a normed linear space then
S( C) will denote the collection of linear functionals in E* which attain their
supremum on C. That is,

S(C) = {IE E*: :!XE C, such thatf(x) = sup f(y)}.
I'E C

In particular, if C = E I , then S(E I ) denotes the set of functionals III E*
which attain their norm on E.
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In the following, C(Q) denotes the Banach space, with the uniform
norm, of real valued continuous functions defined on the compact,
Hausdorff space Q, and L,(T, v) denotes the space of real valued Lebesgue
integrable functions on the positive measure space (T, v) endowed with the
norm Ilxll = ST Ixl dv. We recall that C(Q)*, the dual of C(Q), is M(Q), the
space of regular Borel measures on Q. Also, we assume that the measure
space (T, v) is such that L 1(T, v)*, the dual of L, (T, v), can be identified
with the space of real valued, essentially bounded functions defined on the
positive measure space (T, v). (This will be the case, e.g., if (T, v) is (J­

finite. )
If J.1 E C(Q)*, then J.1 = J.1 + - J.1- will denote the Jordan decomposition of

the measure and supp(J.1) its support, the complement of the largest open
subset U of Q such that 1J.11 (U) = o.

If M is a subspace of a normed linear space E and x E E, we define

P",Ax) = {m aEM: Ilx - ma II = inf IIx -mil}.
mE /'14 ...

The subspace M is called proximinal if the set PM(X) is nonempty for each
XE E.

lf T is a map, we denote by T-' the inverse map. For instance, for
mE M, PM 1(m) would denote the set of all elements x in E for which
mE P M(X). Also, if T is defined on a normed linear space E and M is any
subspace of E, TI M would denote the restriction of the map T to the sub­
space M.

Finally, if A and B are subsets of a normed linear space E, A\B will
denote the complement of B in A.

All other undefined notation or terminology is standard and can be
found in [4].

2. THE R(n, m) SPACE

We start this section with the following results of Garkavi regarding
proximinal subspaces of finite codimension.

THEOREM A (Garkavi [5]). Let M be a subspace of finite codimension
in a normed linear space E. Then M is proximinal il and only if

THEOREM B (Garkavi [7]). Let M be a subspace of finite codimension
in C( Q). Then M is proximinal if and only if the annihilator space satisfies
the following three conditions:
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(i) supp(,u+)nsupp(,u )=rjJ,/or every JiEM~\jO}.

(ii) ,u2 is ahsolutely continuous with respect to ,u I on supp(,u I), f{JI'
every pair ,u1,,u2EM~\{O}.

(iii) SUpP(,u2)\SUpP(,uI) is closed/or each ,u1,,u2EM~\{O}.

Theorem A implies that if M is of finite codimension n in any normed
linear space E, then

M is proximinal ¢:> Every subspace N:2 M with codim N:( n
is proximinal. ( I )

Theorem B implies that if E = C( Q) and M is a subspace of finite codimen­
sian in E, then

M is proximinal ¢:> Every subspace N:2 M such that codim N = 2 is
proximinal. (2)

Also, if E = co, the space of sequences of real scalars converging to zero
with the sup norm (Pollul [10], Blatter and Cheney [I]), or if E is an
(incomplete) inner product space (Deutsch [3]), we have for a subspace M
of finite codimension in E, then

Mis proximinal ¢:> Every subspace N:2 M such that codim N = 1 is
proximinal. Or equivalently every hyperplane
containing M is proximinal. (3)

However, this special behaviour of C( Q) or Co is not typical. In fact, if E is
any infinite dimensional L I (T, v) space, one can construct a subspace M of
finite codimension n (n ~ 2) such that every subspace N of E with N ~ M
and N # M is proximinal, while M itself is not proximinal [8]. Thus in
view of (I )-(3) and the above-mentioned behaviour of LI(T, v), it seems
natural to make the following definition.

DEFINITION 1. A nonreflexive space E is said to be a R(n, m) space (m
and n positive integers, n ~ m) if M is a subspace of finite codimension k in
E, m :( k :( n, then

M is proximinal ¢:> Every subspace N:2 M such that codim N = m is
proximinal. (4 )

Remark I. It would be preferable to have the following simpler
definition in place of definition 1, if the two were equivalent.

A nonreflexive space E is a R(n, m) space (n > m ~ 1) if M is a subspace
of codimension n in E, then (4) holds.
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Clearly, Definition 1 implies the above. However, the above definition
would imply Definition 1 only if every subspace M of codimension k in E
(m ~ k ~ n), with the property that all subspaces N, N"2 M, and codim
N = mare proximinal, contains some subspace L of codimension n in E
with the same property. That is, L is such that every subspace N"2 L with
codim N = m is proximinal. If we consider the particular case where m = 1,
this would mean that every k-dimensional subspace of S(E 1 ) should be
contained in some n-dimensional subspace of S(E I ). Even for this simplest
case we do not know whether the above-mentioned condition holds in all
normed linear spaces.

The space Co and the incomplete inner product spaces are R(n, 1) spaces
for n ~ 1, C(Q) is a R(n, 2) space for n ~ 2, and if n is any positive integer,
every infinite dimensional L 1(T, v) space is not a R(n, m) space for any
n > 1 and with m < n.

It is worth mentioning here that any infinite dimensional C( Q) space is
not a R(2, 1) space and hence not a R(n, 1) space for n ~ 2. The following
example, adapted from Phelps [9], shows that one can construct a sub­
space M of codimension 2 in any infinite dimensional C( Q) space such that
every hyperplane containing M is proximinal but M itself is not
proximinal.

Select a sequence (qll)/~~1 in Q, with qn=l-qm for n=l-m, which has a
cluster point qoEQ, with qO =l-qll for n= 1,2.... Define PI' P2EM(Q) by

x 1
/I - " -61""2 - L 411 'III'

11=1

where

if qE B

if q¢ B'
for any subset B of Q.

Let M={XEc(Q):Pi(X)=O, for i=I,2}. Then M~ is the two dimen­
sional subspace of M( Q) generated by PI and P2' If a is any scalar, we have
(PI + ap2)(qll) = (1/2 11

) + (a/4 11
) > 0 if 2n> -a. This implies that for any

pEM~, we have supp(p+)nsupp(p )=¢J or, equivalently, every pEM~
attains its norm on C( Q). Hence every hyperplane containing M is
proximinal. However, M is not proximinal in C(Q) since condition (ii) of
Theeorem B does not hold for PI and P2'

In the sequel when we say that a normed linear space is a R(n, m) space,
we will presume that E has at least one proximinal subspace of codimen­
sion n. This, in turn, would imply that the set S(£I) has at least one n-
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dimensional subspace contained in it. We note that C(Q) and LdT, v) have
proximinal subspaces of finite codimension n, for every n (Garkavi [6, 7J).

Given m? I, if a normed linear space £ is a R(n, m) space for all n ? m,
then we call £ a R(m) space. Thus Co would be a R(I) space, C(Q) would
be a R(2) (but not a R(2, I)) space. Below we give a simple but useful com­
ment (Corollary 1) regarding R( I) spaces. We need the following result of
Garkavi and Proposition 1 in the sequel.

THEOREM C (Garkavi [5J). Let £ he a normed linear space and M he a
suhspace of E. Then M is proximinal in £ if and only iffor every x E £, there
exists an y E £ such thar

and

f(x)=f(y), for every fE M L,

PROPOSITION 1. Let £ he a normed linear space with £* smooth at every
point of S(£tl n £r If M is a suhspace of £ with M~ <:; S(£tl, then M is
proximinal in E.

Proof We would show that under the assumptions of Proposition 1,
the conditions of Theorem C hold.

Let xEE. Define 1>=.fIM 1
. Then 1>E(M,l)*. Let 1>oE£** be a norm

preserving extension of 1>. Then 111>0 II = 111>11 = II.f IM'cll.
Select a sequence (./n) in (M 1

) 1 such that fn(x) ---> II·f IM~ II. Let f be a
w* limit of ((,,). Since M~ is w* closed, we have fE M~. Also
f(x)=II·fIM~11 and so Ilfll=1.

We have M~ <:; S(£I) and hence there exist an y E £1 such that
f(y) = II.vll· The functionals 1>0 and yin £** supportfE S(£l) n £r Since
£* is smooth at f, we have 1>0 = .v. This implies that

and

1>0(./) =f(x) =f(y), for every fE M -'-,

We have the following easy consequences of the proposition.

COROLLARY 1. Let £ he a normed linear space with £* smooth at every
point of S(£l) n £t. Then E is a R(I) space.

COROLLARY 2. If £* is smooth then E is a R( 1) space. In particular, if £
is an (incomplete) inner product space, then £ is a R( 1) space.
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If E is a weakly locally uniformly rotund (WLUR) space then E* is
smooth at every point in S(EIlnEt. Yorke [13]). If E is a separable quasi
reflexive Banach space of deficiency one, then one can define an equivalent
norm on E such that E** is smooth. (Smith [12]). Thus we have

COROLLARY 3. If E is WLUR, then E is a R(l) space.

COROLLARY 4. If J denotes the James space, there exists an equivalent
norm on J such that J* is a R( 1) space as under the new norm.

The converse of Corollary 1 is not true, Co being the counterexample.
For the sake of completeness, we give below a proof (Lemma 3) for the fact
that Co is a R( 1) space. Also, this proof is simpler than the ones given in
[ 1] and [10].

If x), x 2 , ... , x" are elements in a normed linear space E, let [x), x 2 , •.• , xn]
denote the subspace generated by the elements x), x 2 , ... , x". Then we have

LEMMA 2. Let E be a normed linear space with a monotone basis (e;)/==).
Let (e i*)/== 1 denote the corresponding biorthogonalfunctionals in E*. If Mis
a subspace offinite codimension in E such that M~ <::; [e~, ei ,... , etJ, for
some finite k, then M is proximinal.

Prool Let M k denote the closed subspace generated by the infinite set
of elements ek + 1, ek + 2,,,,, and Q denote the natural projection from E onto
M k· Let m = 2::/~.k + 1 mie i and x = 2::,"== 1 xie i (where m i and Xi are scalars)
denote arbitrary elements in M k and £\M k' Then we have

Ilx-mll = II!i xie i+. f (xi-m;) e,ll
,~ I ,~k +)

and Qx E PMl\:). Thus M k is proximinal in E. Then, by (l), M is also
proximinal in E.

LEMMA 3. Co is a R( 1) space.

Prool Let M be a subspace of finite codimension in Co such that
M~ c S(E)). We have to show that Mis proximinal.

Since M~ c S(EIl and M~ is finite dimensional, there is a pOSItIve
integer k such that M~ S [e~, ... , en, where (e i*),': 1 is the natural basis of
I) = (co)*. Thus, by Lemma 2, Mis proximinal in Co.
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3. THE PROBLEM OF POLLIJI

In the sequel, we will use the following notation of Pollul [10]. If M is a
subspace of any normed linear space E, then Me' I' I E will mean that /\4 is
a proximinal subspace of E.

Prohlem (Pollul [10]). Which nonreflexive spaces E satisfy

(1')

Gc M,
(1')

Me E,
(fJ)

dim M/G=dim E/M= 1=G e E?

DEFINITION 2. A normed linear space E is said to be a P(n) space

(n ~ 2) if

(1'1
GeM,

(I')

Me E,
(1')

dim E/G ~ n = GeE.

A normed linear space will be called "Pollul space," abbreviated as P
space, if it is a P(n) space for every n ~ 2. That is, proximinality is trans­
itive.

We now restate the problem of Pollul in a more general form and
proceed to give an answer to it.

Prohlem 1. Which nonreflexive spaces are P(n) (n ~ 2) spaces?
We note that when n = 2, the above problem reduces to that of Poilu!'

Before we give a characterization of P(n) spaces, we need the following
definitions and observations.

DEFINITION 3. Let E be a normed linear space. Let f and g be elements
of the dual space E*. We say f is strongly orthogonal to g if f attains its
norm on E at a point in the kernel of g or equivalently if there exists an
xEE , ng 1(0) such thatf(x)= Ilxll.

We observe that iffis strongly orthogonal to g, then

II f II = III Ig(o! II = inf II f-xg ii,
x

and therefore fE Pr..il(O). Hence f is orthogonal to g (in the sense of
Birkhoff).

The converse does not hold. If we considerj and g in I x = (1,)* given by

and

g= (1, 0, 0, ...... ),
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then II I II = 1 = II I Ig(e))1 II, but I does not attain its norm at any point in
g-I(O).

If F is a finite dimensional subspace of E* given by F = [f1,f2 ,...,f,J,
where Ii EE*, for 1~ i ~ n, and IE E*\F, we say that I is strongly
orthogonal to the subspace F if it attains its norm on E 1 at a point
x E n;l~ I Ii-I(O).

DEFINITION 4. Let E be a normed linear space and F be a subset of the
dual space E*. Then F is called orthogonally linear if

IEF, gEF, and I is strongly orthogonal to g => [1, g] sF.

We observe that if E = Co or an inner product space [3], then S(E I ) is a
linear subspace of E* and hence orthogonally linear. However, it is easy to
construct examples of infinite dimensional C( Q) or L I (T, v) spaces for
which the set of norm attaining functionals is not orthogonally linear. For
example, if E = II, then S(E I ) is not orthogonally linear.

It follows from Theorem A of Garkavi that if M is a subspace of finite
codimension in any normed linear space E, then M is proximinal implies
that every IE M L is in S(E I ). In the particular case when M is a hyperplane
in E, this is also a sufficient condition for proximinality of M.

Let E be a normed linear space and II ,j~,... ,f" be in E*. Let
M = n;'~ J, 1(0) and G be a subspace of finite codimension in M. The
annihilator of G in M is isometrically isomorphic to the subset
Pwl(O) 11 G.l of E*. Thus we have

Remark 2. If M and G are defined as above, then

II'I
GeM => Every IE PMl(O) n G.l is strongly orthogonal to the subspace

M.l of E*.

In the particular case when G is a hyperplane in M, the above is also a suf­
ficient condition. In other words, if G = [f1,f2 ,..., j;" g], for g E E*, then
G c 11'1 M if g is strongly orthogonal to the subspace M.l = [fl , ... ,f,,].

PROPOSITION 5. Let E be a P(2) space. Then S(EIl is orthogonally
linear.

Prool Let II and f~ be linear functionals in S(E I ) such that II is
strongly orthogonal to f2' We have to show that [II,f2] S S(E I ).

Let G = n;~ Ji-I(O) and M =I2 1(0). Then by Remark 1, G c (1'1 M.
Further, Mell'I E since 12 E S(E I ). Thus G c (I'I M, Me (1') E, and
dim E/G = 2. But E is a P(2) space and this implies that G c (1') E. This in
turn implies that G.l = [fl ,j~J S S(E I ).

We are now in a position to give a characterization of P(n) spaces.
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THEOREM 6. Let E he a nomzed linear space and n he a positive integer
~ 2. Then £ is a P( n) space iF and only iF E is a R( n, I) space and S( E, ) is
orthogonally linear.

Proof: Necessity. A P(n) (n ~ 2) space is also a P(2) space, and by
Proposition 4, S(E 1 ) is orthogonally linear.

We will now show that E is a R(n, 1) space. To begin with, we prove
that E is a R(2, I) space and then use induction to show that E is a R(n, I)
space.

Assume that G is a subspace of codim 2 in £ with G S; S(E 1 ). Let
II E G~ be chosen arbitrarily. Since II E S(E 1 ), there exists x EEl such that
II (x) = II II II· Select I2 E G"- such that f~(x) = O. Then II is strongly
orthogonal to f~. We have G = n7~ Ji 1(0). Taking M =/2 1(0), we see
that G ell') M by Remark l. Also M ell') £ since f~ E S(Ed. Thus
GelPi M, M ell') E, and dim EjG = 2. Since E is a P(2) space, this implies
G ell') E, and hence E is a R(2, 1) space.

Now assume inductively that £ is a R(k - 1,1) (3 ~ k ~ n) space. We will
show that E is a R(k, I) space. Let G be any subspace of codimension k in
E with G~ c S(E 1 ). We claim that G ell') E.

To show this let g E G 1 be an arbitrary functional. Since g E S(£I)' there
exists XE £1 such that g(x) = II gil. Construct a basis g, II ,f~, ...,f~ ) of G 1

such that l:(x)=O, for l~i~k-l. Define M=n7~U', )(0). Then
M'c = [f: ... ,f~ 1] and codim M = k - l. Since Ml- c G~ S; S(EIl and E is
assumed to be a R(k - I, 1) space, we have Mell'I E. Now G is a hyper­
plane in M and g is strongly orthogonal to M I. Hence by Remark I.
G ell') M. Thus G c 1/'1 M, M ell') E, and, further, dim E/G = k ~ n. Since
E is a P(n) space, this implies G ell') E.

Sufficiency. Let E be a R(n, I) space with S(£I) orthogonally linear.
Let G ell') M, M ell') E with dim E/G ~ n. We have to show that
G ell') E. Since E is a R(n, I) space, it suffices to show that G- S; S(E)).

The space M~ is proximinal in G 1 and thus Gl-=(P~fl(O)nG~)+M·.

We have M ell') E and this implies that Ml- S; S(E)). Also G ell') M, and
by Remark I, we have PMt(O) n G~ s; S(E1 ) and each functional in
Pwl(O) n Gl- is strongly orthogonal to M~. Since S(EIl is orthogonally
linear, this implies that Gl- S; S(£I)'

COROLLARY 5. A normed linear .\pace is a P space if and only if it is a
R( I) space and S( £ 1) is orthogonally linear.

COROLLARY 6. The space Co and the incomplete inner product spaces are
P spaces.
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COROLLARY 7. The infinite dimensional C( Q) and L, (T, v) spaces are
not P(2) spaces and hence are not P(n) spaces for any n ~ 2.

4. CHARACTERIZATION OF R(n, 1) SPACES

In this section we give two characterizations of R(n, 1) spaces. It does
not seem easy to identify new R(n, I) spaces using these results. However,
any characterization of R(n, I) spaces would involve finite dimensional
subspaces of 5(E,) (of which little seems known) and therefore is likely to
have the same defect in some sense. We feel that sufficient conditions, like
the one given by Corollary I, would be more useful in identifying R(n, I)
spaces.

For F, a linear subspace of E*, let, F denote the weak topology, defined
on E, generated by the elements of F. Thus a net {x,} in E converges to x
in the, ,-topology if and only if x*(x,) -+ x*(x), for all x* E F. Then we
have the following lemma.

LEMMA 7. Let M be a subspace of finite codimension in E. Then M is
proximinal in E if and only if E 1 is 'M"--compact.

Proof We will show that

This, in conjunction with Theorem A, would imply the conclusion of the
lemma.

Let (x,) be a net in E 1 • Then for x E E 1 , we have

Hence

E 1 is 'M,,--compact ¢> 8 M(E 1 ) is compact in (Ml-)~

¢> 8 M(E 1 ) is closed in (Ml- )*, (5)

since 8M(EIl is bounded and (Ml-)* is finite dimensional. Now E, is w*­
dense in E~*, and so 8 M(EIl is dense in (Ml-)i- This together with (5)
implies that E 1 is 'M,,--compact ¢>8 M(EIl = (Ml-)i-

THEOREM 8. A normed linear space E is a R(n, I) space if and only if E,
is 'F-compact for every finite dimensional subspace F of 5(E1 ) with
dim F:( n.
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Proof If F is a subspace of E*, let

F~ = :x E E:f(x) = 0, for everyfE F}.

Then it is easy to verify that E is a R(n, 1) space if and only if F I is
proximinal in E for every finite dimensional subspace F of S(E,) with
dim Fo;;, n. Now the conclusion of the theorem follows from Lemma 7.

COROLLARY 8. A normed linear space E is a R( 1) space if and only if E)
is r I-compact for every finite dimensional subspace F oj' S(E,).

Ij' C is any closed convex subset oj' a normed linear space E, let Ext( C)
denote the extreme points oj' C. Then we have

THEOREM 9. A normed linear space E is a R(n, 1) space if and only if'

for every finite dimensional subspace F of' S( E,) with dim F 0;;, n.

Proof Necessity. Assume that E is a R(n, I) space. Let F be a k-dimen­
sional (1 o;;,k 0;;, n) subspace of S(E,l. Then M=Fl- is proximinal. Further,
F=(F~)~=Ml-.Hence, by Theorem A, HM(Ed=(M.i)t=Fr

Let cPo E Ext(Et *). Let cP be the restriction of cPo to the subspace F of
E*. Then cP E Ft. Hence there exists x E E) with e(x) = cPo This implies that
cPo -.x E F.i or, equivalently, cPo E.X + Fl..

Sufjiciency. Let M be a subspace of codimension k where 1 0;;, k 0;;, n
with M.i s; S(E,). We have to show that M c (pi E or, equivalently, by
Theorem A, GM(Ed = (M.l)t.

We have (M.i1t=Convex hull of Ext((ML)t), since (M-L)* is a finite
dimensional space. Also e,~f( E,) is a convex subset of (M.i) t , and therefore
it suffices to show that Ext((M.l)n s; eM(E,) to prove our claim.

Let cP E Ext( (M.i )t) and cPo be an extremal extension of cP to Et *. Then
cPoEExt(Et*), and by our assumption there is an xEE l such that
cPo E.X + M~. This implies that cP ex + M.i. Hence cPU) = f(x), for every
fE M~. Also IlcPll = Ilxll = 1, since XE E, and cP attains its norm on M.i.
Thus tJM(x) = cPo Since cP E Ext( (M.l) n was chosen arbitrarily, this proves
our claim.

Remark 3. Let F be any finite dimensional subspace of S(E)). The space
F~ is a 11'* closed subspace of E** and hence is proximinal. Thus
E**=P,~'(O)+F~. What is needed further to satisfy the condition of
Theorem 9 is that

(6)
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We note that for x in E, if XE PF~'(O), then

Ilxll = Ilxll = inf II~y - <p11 = supf(x),
<P E F~ IE F[

and therefore (6) implies the condition of Theorem 9.

5. LINEAR STRUCTURE OF S(Ed

141

For a normed linear space to be a P(n) space, by Theorem 6, involves
two conditions, viz., E must be a R(n, 1) space and S(Ed must be
orthogonally linear. The only known examples of spaces E for which S(Ed
is orthogonally linear are Co and the inner product spaces. In both the cases
S(E,) is, in fact, a linear subspace of E*. We do not know of any space E
for which S(Ed is not linear but is orthogonally linear.

Very little seems to be known about the linear structure of the set S(E 1 ).

In this section we make a few observations about the orthogonal linearity
and linearity of S(Ed and pose some questions.

Let M be a subspace of a normed linear space E and fE E*. We have

S(M I ) = {IE E*::Jx E M, 3f(x) = sup f(y)}
I'E Afl

= {IE E*: :JXE M I 3f(x) = Ilfl Mil}.

PROPOSITION 10. Let E be a normed linear space. Then S(Ed is
orthogonally linear if and only if S(H d s S(Ed, for every proximinal hyper­
plane H in E.

ProoF Necessity. Assume that S(E,) is orthogonally linear. Let H be
any proximinal hyperplane in E. Then H = h '(0), for some linear
functional h E S(E I)' Let f E S( H,). Consider f IH. Let fa be a norm preserv­
ing extension of f IH to E*. Then f=f~+ xh, for some scalar x, and fa
attains its norm on E at a point in H. Thus fa is strongly orthogonal to
hE S(E I ). Since S(E,) is orthogonally linear, this implies that fE S(E,).

Sufficiency. Assume that S( HI) s S(E I), for every proximinal hyper­
plane H in E.

Let fl and f2 in S(E,) be such that fl is strongly orthogonal to f2' We
claim that [f1,f~J sS(Ed. Let H=f:;'(O). Then His a proximinal hyper­
plane in E and f, E S(H,). Clearly, if g is any functional in the subspace
[f, ,[2J, g ES(Hd. This implies that g E S(E,), and the claim is proved.
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PROPOSITION 11. Let E he a normed linear space. Then S(E I ) is linear if
S(H I ) = S(Ed, for every proximinal hyperplane H in E.

Proof By Proposition 10, S(E I ) is orthogonally linear. To show that
S(Ed is linear, consider any II andf~ in S(E I ). Let H=I2 1(0). Then His a
proximinal hyperplane and II E S( H j). Let f~ be a norm preserving exten­
sion of II IH to E*. Then f~ E S( E I)' and f;) is strongly orthogonal to f~·

Since S(E j ) is orthogonally linear, we have U~J2 J <;; S(E I ). But
II -f~E [fJ, and so U;j,f2J = [fl J2]. Hence [fl J2J ~ S(Ed·

COROLLARY 9. Let E he a R(2, 1) space. Then S( E I) is linear il and only
if S(Hd = S(E] ),[01' every proximinal hyperplane H in E.

Proof We have to prove only the necessity. Let E be a R(2, I) space
with S(E I ) linear. Clearly, S(E I ) is orthogonally linear, and so by
Proposition 10, S(H I ) <;; S(E j ), for every proximinal hyperplane H in E.

To prove the other inclusion, consider any IE S(E1 ) and a proximinal
hyperplane H in E. Then H = h -1(0), for some hE S(E I ). Since S(E j ) is
linear, we have U; hJ <;; S(E I ). Further, E is a R(2, 1) space and so
[f, h J1. C Ir) E. This implies that [f h J1. is a proximinal hyperplane in H.
Hence IE S(H I ). Since I and H were arbitrarily chosen, this proves our
claim.

Now we list some questions for which we do not have an answer.

Prohlems. (1) If E is a normed linear space, does orthogonal linearity
of S(Etl imply linearity of S(E I )?

(2) Are there any P spaces other than Co and the inner product
spaces?

(3) Are there any nonrefiexive normed linear spaces E, other than Co

and the inner product spaces for which S(E I ) is linear or orthogonally
linear?

(4) We observe that all the known examples of R(2, 1) spaces are, in
fact, R( 1) spaces. Is there a normed linear space E which is a R(2, 1) space
but not a R(n, 1) space for n ~ 3?
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